THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS MATH2050 (First Term. Mathematical Analysis I Homework V (

Questions with * will be marked.

- 1. Let $f: A \to \mathbb{R}$, $A^+ = A \cap (x_0, \infty)$, $A^- = A \cap (-\infty, x_0)$, where $x_0 \in \mathbb{R}$ is clustered (=non-isolated) with respect to A^+ and A^- .
- Show that $\lim_{x \to x_0} f(x) = \ell \in \mathbb{R}$ if and only if $\lim_{x \to x_0^+} f(x) = \ell = \lim_{x \to x_0^-} f(x)$.

State and prove the corresponding result for $\ell = +\infty$ (and also that for $\ell = -\infty$).

- 2. Let $g: (a, \infty) \to (b, \infty)$ and $f: (b, \infty) \to \mathbb{R}$. Suppose that $\lim_{x \to \infty} f(x) = \ell$ and $\lim_{t \to \infty} g(t) = \infty$. Show that $\lim_{t \to \infty} f(g(t)) = \ell$.
- 3. Let $g: (a, b) \to (c, d)$ and $f: (c, d) \to \mathbb{R}$, and let $t_0 \in (a, b)$, $x_0 \in (c, d)$ be such that $\lim_{t \to t_0} g(t) = x_0$. Suppose that $\lim_{x \to x_0} f(x) = \ell (\in \mathbb{R})$. In view of question 2 above, it is natural to ask: true or not that $\lim_{t \to t_0} f(g(t)) = \ell$?
 - (a) If there exists $\gamma > 0$ such that $g(t) \neq x_0$ for all $t \in V_{\gamma}(t_0) \setminus \{t_0\}$, then prove "yes".

(b) Give a counter example, otherwise.

4. Evaluate the limits (if exist) or show that they do not exist.

(a)
$$\lim_{x \to 1^+} \frac{x}{x-1};$$

(b)
$$\lim_{x \to 1^-} \frac{x}{x-1} \text{ (Hint: } \frac{-m}{1-m} \text{ can be expressed in the form } 1-\delta);$$

(c)*
$$\lim_{x \to \infty} \frac{\sqrt{x}-5}{\sqrt{x}+3};$$

(d)
$$\lim_{x \to \infty} \frac{\sqrt{x}-x}{\sqrt{x}+x};$$

(e)
$$\lim_{x \to 0} \frac{\sqrt{x+1}}{x}.$$

Check your results by definitions.

-